Invention \＆Innovation
NITTA

高し形久性を持つ加硫ゴム䒺防水システム
ニッタシートエキストラ

ニッタ化エ品株式会社

> 私たちは, 建築防水の分野において,
> ゴムを素材としたべストソリユーションを提供し,人と社会に求められる企業でありつづけます。

ニッタシートエキストラの歩み

ニッタ化工品（株は，2017年12月に TOYO TIRE グループの東洋ゴム化工品株からシート防水事業を承継しました。 TOYO TIRE が 1957 年に加硫ゴム系シート防水「トーヨーシート」を上市して以降，シート防水の先駆者として，累計 170 百万 m^{2} のシートを市場に送り出してきました。（2019 年現在）
ニッタ化工品（株は主力の防水シート「ニッタシートエキストラ」と共に，今後も防水市場の主力を担う製品を開発，供給して参ります。

1957年	（S32）	西独BASF社よりイソブチレンシートを防水シートとして輸入開始
1961年	（S36）	イソブチレンシートを国産化「レオパノール」生産開始
1962年	（S37）	ブチルゴムを主成分とする防水シート「トーヨーシート」の生産開始
1967年	（S42）	＊EPDMを主成分とする「トーヨーシートエキストラ」を開発
1969年	（S44）	日本工業規格JIS A 6008「合成高分子ルーフィング」制定
1970年	（S45）	＊合成高分子ルーフィング䯹話会（現合成高分子ルーフィング工業会 略称KRK）発足
1971年	（S46）	西日本トーヨーシートエ業会設立 加硫ゴム広幅シート「トーヨー土木用シート」の開発
1972年	（S47）	日本建築学会建築工事標準仕様書JASS8「防水工事」制定
1974年	（S49）	東日本トーヨーシート工業会設立
1976年	（S51）	トーヨーシート防水工業会が発足（東西を合併，1987年にトーヨー防水工業会に発展） シート防水工事業団体連合会発足（1990年に発展的解消）
1977年	（S52）	労働省認定技能検定「シート防水技能士」 誕生
1978年	（S53）	自着層付シート「TS－L」の開発
1981年	（S56）	カラーシート「TS－CL」の開発
1984年	（S59）	断熱材積層シート「TS－DPE」；フクレ防止シート「TS－2WS」の開発 ポリウレタンフォームを用いた断熱工法「DS工法」の開発
1991年	（ H 3 ）	のり付きシート「TS－SN」ウレタン複合防水工法「RPI法」の開発 ＊一般社団法人全国防水工事業協会設立
1995年	（H 7）	加硫ゴムシートを用いた機械的固定工法「MF－RI法」の開発
2007年	（H19）	高耐候•遮熱塗料「カバーペイントYTC」の開発
2008年	（ H 20 ）	瓦棒葺き金属屋根改修工法「トーヨーキャップエ法」の開発
2010年	（ H 22 ）	のり付きシート「TS－SNフィルムなし」の開発
2012年	（H24）	トーヨー防水工業会専用ブランド「PROFORT プロフォート」の開発
2015年	（ H 27 ）	UR都市機構専用工法「UR工法」の開発
2017年	（ H 29 ）	新会社設立（ニッタ化工品株式会社）に伴い，防水事業を含む建築免震ゴム事業を除く全ての化工品事業を新会社が承継
2018年	（H30）	加硫ゴムシート防水材全般の製品名変更（新製品名「ニッタシートエキストラ」「「ニッタメカシート」，「ニッタ瓦棒シート」） トーヨー防水工業会はニッタ防水工業会に会名変更

※ EPDMとは．．．エチレンプロピレンゴム（Ethylene－Propylene－Diene Rubber）の略称です。
※ 青字は防水業界の出来事です。弊社はKRKの会員および社団法人全国防水工事業協会の賛助会員です。

ニッタシートエキストラの材質

ニッタシートエキストラは，耐久性に優れたEPDMを主成分とする加硫ゴムシートと，気密性に優れたブチルゴム（IIR） を主成分とするテープ状シール材を組み合せた防水工法です

EPDMとは

$$
\left.\longrightarrow\left(\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)_{l}+\mathrm{CH}-\mathrm{CH}_{3}\right)_{m}(X)_{n}
$$

の化学記号で表されるエチレンプロピレンゴム （Ethylene－Propylene－Diene Rubber）の略称です。

IIRとは

の化学記号で表されるイソブチレンイソプレンゴム （Isobutylene－Isoprene Rubber）の略称です。

加硫とは

ゴムに硫黄などの加硫剤や加硫促進剤を配合し，熱処理等 をおこなうことにより，ゴムの分子同士が架橋反応し，網目状 の化学結合が生じることをいいます。自然加硫とは，特に熱処理することなく自然状態で，加硫と同様の架橋反応が起きることです。
ゴムは加硫するとゴム弾性が生じ，強度が増大します。

ニッタシートエキストラの特長

ニッタシートエキストラの防水工法は，工場で一定の寸法のシート状に形成した防水シートを接着剤を用いて下地に張り付ける工法です。均一な厚さと材質の防水層を形成するので，信頼性が高く，さまざまな機能を付加できます。

カラフル

ニッタシートエキストラは，E P D M のカラーゴムを加硫一体化したカラフルなシートや，ペイ ントでお好みの色に仕上げるシートがあります。
ペイント仕上げは，自由な着色ができ，外壁材と意匠性を合わせたり，特注色を用いることに より，顧客ニーズに対応することができます。

軽 量

ニッタシートエキストラは，塩化ビニル系シート防水工法と比較して軽量で柔軟性があります。設計の自由度が高まり，異形屋根にも施工ができます。
かぶせ方式で改修施工ができるので，廃材が少なく，荷重負担もわずかで済みます。

軽歩行

ニッタシートエキストラは，S D フロアコートで仕上げて軽歩行にすることができます。
保護材料を敷設して防水層上を利用することもできます。

断 熱

別張りでポリエチレンフォームやポリウレタンフォームを用いる露出工法，ポリスチレンフォー ムを用いる保護コンクリートエ法もできます。

脱 気

ニッタシートエキストラの商品シリーズには，溝付きの通気層を積層したシートがあります。 また，ニッタシートエキストラと通気テープを併用した工法もできます。
これらのシート及び通気テープを用いることにより，下地からの水分によるフクレを軽減させ ることができます。

安 全

ニッタシートエキストラは，火気を使用しない冷工法です。
施工時には煤煙の発生がないため，改修工事に向いています。

ニッタシートエキストラ製品一覧表

ニッタシートエキストラは，現場の条件に合わせて，さまざまな種類•構造を持ったシートがあります。

品 種	総厚（mm）		標準長さ（m）		重量（kg）		JIS 規格品 （JISA 6008）	特長•用途	構	造	
TS－S	1.0		20		27		均質シート	汎用単層シート	加硫層－	－黒ゴム	
	1.2		10	20	16	32					
	1.5	2.0	10		20	28					
TS－SN	1.2		10	15	17	25	均質シート	のり付きシート	加硫層	——曈ゴ着䧻	
	1.5	（2．0）	10		21	29					
TS－CL	1.2		20		32			$\begin{gathered} \text { カラーシート } \\ \text { (グリーン・グレー) } \end{gathered}$			
	1.5	2.0			20	28					
TS－DPE	5.2		20		36			PE 発泡積層シート			
TS－K	1.3		20		39			非加硫層付きシート			
TS－L	1.7		15		37			粘着層付きシート			

※総厚欄（）の厚みの製品は受注生産となります。シートの幅は全て 1200 mm になります。

シート防水の各仕様適用表

シート名	露		出		保護※3 （保護断熱）
	非歩行	軽歩行※1	脱気 $※ 2$	断熱	
TS－S	－	\triangle	\triangle	©	－
TS－SN	（	\triangle	\triangle	\bigcirc	－
TS－CL	（	\triangle	\triangle	（）	－
TS－DPE	（	－	\bigcirc	\bigcirc	－
TS－K	（	\triangle	－	－	－
TS－L	－	－	－	－	（

○推奨：○使用可能：\triangle 条件付き使用可能
注）\triangle は下記の条件とします。
※1：SDフロアコート仕様
$\mathrm{TS}-\mathrm{CL}$ は厚さ 2.0 mm のみSDフロアコート無塗布で可
※2：Vテープ仕様（TS—DPEを除く）
※3：GT テープ使用

シート防水の各下地適用表

	屋 上							$\begin{aligned} & \text { ベランダ } \\ & \text { バルコニー } 3 \end{aligned}$
	新		築	改修（かぶせ方式の場合）				
	RC．PCa	ALC	プレ゙ッキ		ゴムシート	保護 ※1	塗膜※2	
TS－S	－	（ $)$	\triangle	\triangle	（）	\triangle	\triangle	\triangle
TS－SN	（	（	\triangle	\triangle	（	\triangle	\triangle	\triangle
TS－CL	（）	（）	\triangle	\triangle	©	\triangle	\triangle	\triangle
TS－DPE	O	\bigcirc	\bigcirc	\triangle	（	\bigcirc	\triangle	－
TS－K	（	（	－	\triangle	\bigcirc	－	\triangle	\triangle
TS－L	（保護コンクリートエ法のみ可）							

○推奨：○使用可能

：\triangle 条件付き使用可能
注）\triangle は下記の条件とします。
※1：Vテープ仕様（TS—DPEを除く）
※2：下地処理方法による
※ 3 ：SDフロアコート仕様
TS—CLは厚さ 2.0 mm のみ SDフロアコート無塗布で可

ニッタシートエキストラ防水エ法仕様一覧表

ニッタシートエキストラは，工法•下地の種類，適用に区分してシートの種別ごとに使い分けをします。

			露 出			保	護	
			断					
			ポリエチレンフォーム	ポリウレタンフォーム	ポリスチレンフォーム			
下地の種類	RC	ALC•PCa		RC	RC•ALC•PCa		RC	RC
仕上材 ${ }^{1}$	カバーペイント			SDフロアコート	カバーペイント		コンクリート	コンクリート／保護材
適 用	非歩行		軽歩行	非歩行		歩行		
KRK No	RV－F101	RV－F102	RV－F201	RV－F401				
TS－S	501 S	551 S	601 S	8015	807 S			
TS－SN	501 SN	551 SN	601 SN	801 SN	807 SN			
TS－CL	501 CL	551 CL	601 CL ※2	801 CL	807 CL			
TS－DPE	501 DPE							
TS－K	501 K	551 K	601 K					
TS－L						705 L	701 L	

※1 TS－CLは仕上材の必要がありません。 ※2 厚さ 2.0 mm の場合のみ可能

ニッタシートエキストラエ法フローチャート

工 程	501	551	601	701	705	801	807
下地の確認•清掃	∇						
プライマーAD－12（R）塗布	∇	∇	∇	∇	∇	∇	
目地処理		∇					
ポリエチレンフォームの位置決め（墨出し）						∇	
アクメボンドAD－102塗布						∇	
ポリエチレンフォーム敷設張付け						∇	
プライマーU－002T塗布							∇
ポリウレタンフォームの位置決め（墨出し）							∇
ボンド550塗布							∇
ポリウレタンフォーム敷設張付け							∇
役物回りの処理	∇						
ニッタシートエキストラの位置決め（墨出し）	∇						
アクメボンドAD－102塗布	∇						
ニッタシートエキストラ敷設張付け	∇	∇	∇	∇	∇	∇	\square
シート端末処理	\square	\square	∇	\square	∇	∇	\square
アクメボンドAD－008塗布					∇		
ポリスチレンフォーム敷設					∇		
保護仕上塗装	∇	∇	∇			∇	∇
保護層打設				∇	∇		

501S

比較的急勾配の屋根から変形屋根 に至る広範囲な屋根に向いている標準的な工法です。
シート防水の基本として，防水層の長期にわたる耐久性が実証されて います。

下地	$\mathrm{R} C$	標準量 $\left(/ \mathrm{m}^{2}\right)$
1	プライマ－AD－12（R）	0.2 kg
2	アクメボンドAD－102（下地）	0.2 kg
3	アクメボンドAD－102（シート）	0.2 kg
4	ニッタシートエキストラTS－S	
5	カバーペイント	32頁参照

※公共建築工事標準仕様書（S - F1）に適合する工法 です。

501SN

工場であらかじめニッタシートエキ ストラTS－Sに接着剤を規定量均— に塗布した糊付きタイプのシート を用いた標準的な工法です。 シート防水の基本として，防水層の長期にわたる耐久性が実証されて います。

下地	R C	標準量 $\left(/ \mathrm{m}^{2}\right)$
1	プライマ－AD－12（R）	0.2 kg
2	アクメボンドAD－102（下地）	0.2 kg
3	ニッタシートエキストラTS－SN	
4	カバーペイント	32頁参照

※タッキネスの無くなったシートを使用する場合は， シート面にもアクメボンドAD－102を塗布してくだ さい。

501CL

耐摩耗性に優れたカラー層を持つ ニッタシートエキストラTS—CLを用 いて，現場での塗装仕上げを省力化した工法です。
塗り替えの必要性がなく，メンテナ ンス費用の低減にもつながります。

下地	R C	標準量 $\left(/ \mathrm{m}^{2}\right)$
1	プライマ－AD－12（R）	0.2 kg
2	アクメボンドAD－102（下地）	0.2 kg
3	アクメボンドAD－102（シート）	0.2 kg
4	ニッタシートエキストラTS－CL	

※シート厚 2.0 mm の場合は軽歩行（601CL工法）が可能となります。

非歩行露出工法

501S－HR

高反射塗料を塗布することでシー トの表面温度を抑え，建物の省エ ネルギー化と防水層の長寿命化に効果があります。

下地	R C	標準量 $\left(/ \mathrm{m}^{2}\right)$
1	プライマ－AD－12（R）	0.2 kg
2	アクメボンドAD－102（下地）	0.2 kg
3	アクメボンドAD－102（シート）	0.2 kg
4	ニッタシートエキストラTS－S	
5	カバーペイントYTC	0.3 kg

501 SN －AQ

環境対応として水性エマルション系のプライマーと接着剤を用いた工法です。無溶剤タイプの材料使用により安全性の高い仕様です。

下地	R C	標準量 $\left(/ \mathrm{m}^{2}\right)$
1	プライマ－AD－12AQ	0.1 kg
2	アクメボンドAD－102AQ（下地）	0.1 kg
3	ニッタシートエキストラTS－SN	
4	カバーペイントWTC•YTC	32頁参照

551S

ALC•PCa板などの目地処理 をおこなって，下地の挙動変化に対応できるようにした工法です。

下地	A L C • PCa	標準量 $\left(/ \mathrm{m}^{2}\right)$
1	プライマーAD－12	0.3 kg
2	アクメボンドAD－102（下地）	0.2 kg
3	アクメボンドAD－102（シート）	0.2 kg
4	ニッタシートエキストラTS－S	
5	カバーペイント	32頁参照

※PCaおよび前処理をおこなったALCの場合，プライマー AD－12（R）の標準塗布量は $0.2 \mathrm{~kg} / \mathrm{m}^{2}$ となります。 ALCの短辺目地部にはクラフトテープを張り付けます。 ※公共建築工事標準仕様書（S－F1）に適合する工法です。 ※ALCロッキング構法の場合は，11頁を参照してください。

非歩行露出脱気工法

501DPE

ニッタシートエキストラTS－DPE の通気層が下地スラブの水分を拡散，ベントSまで導いて排出さ せ，フクレを軽減する脱気工法 です。

下地	RC・デッキプレート	標準量 $\left(/ \mathrm{m}^{2}\right)$
1	プライマ－AD－12（R）	0.2 kg
2	アクメボンド AD－102（下地）	0.2 kg
3	アクメボンド AD－102（シート）	0.2 kg
4	ニッタシートエキストラTS－DPE	
5	ベントS	$50-70 \mathrm{~m}^{2} /$ カ所程度
6	カバーペイント	32頁参照

※立上り部と平場端部の溝付ポリエチレンフォーム上にはTS－Sを使用します。
※平場の端部や役物回りは必要に応じて溝付ポリ エチレンフォームを用いてください。

501S－V

ニッタシートエキストラの下に通気テープを張り，下地スラブの水分をベントSまで導いて排出さ せ，フクレを軽減する簡易的な脱気工法です。

下地	R C・デッキプレート	標準量 $\left(/ \mathrm{m}^{2}\right)$
1	プライマ－AD－12（R）	0.2 kg
2	Vテープ	$(1.5 \mathrm{~m}$ 間隔）
3	アクメボンドAD－102（下地）	0.2 kg
4	アクメボンドAD－102（シート）	0.2 kg
5	ニッタシートエキストラTS－S	
6	ベントS	$50 \mathrm{~m}^{2} /$ カ所程度
7	カバーペイント	32頁参照

Vテープ・ベントSの設置例

※伸縮目地がある場合は伸縮目地部位にVテープを張り付けます。張り付ける間隔は下地の状況に応じて変更してください。 ※ベントSは水上側のVテープが交差する箇所に設置してください。

601 S

ニッタシートエキストラに
SDフロアコートを塗布し，軽歩行 にする工法です。

下地	C R C	標準量 $\left(/ \mathrm{m}^{2}\right)$
1	フラライマーAD－12（R）	0.2 kg
2	アクメボンドAD－102（下地）	0.2 kg
3	アクメボンドAD－102（シート）	0.2 kg
4	ーツタシートエキストラTSSS	
5	SDフロアコート	0.8 kg 以上

※SDフロアコートを一度に厚塗りする場合は，コテ塗 りとしてください。

701L

ニッタシートエキストラ施工後， コンクリートで保護層を設けて歩行可能にする工法です。

下地	R C	標準量（／m）
1	フラライマ－AD－12（R）	0.2 kg
2	アクメボンドAD－102（下地）	0．2kg
3	ニッタシートエキストラTS－L	
4		0.1 mm 以上
5	保教層（コンクリート・加工事）	60 mm 以上

※立上りに保護層を打設しない場合は，立上りはTS— Sとし，接合部にはGTテープ40を挿入します。
絶縁フィルムは両面テープ等を用いて仮止めしてく ださい。
緩衝材は 20 mm 以上としてください。（別工事）
保護層に砕石や砂利を使うことはやめてください。
立上りに保護層を打設する場合は，必要に応じてト ンボとラス網を張り付けてください。

705L

ポリスチレンフォームを断熱材とし てニッタシートエキストラの上に張り付け，さらにコンクリートで保護層 を設けて歩行可能にする工法です。

下地	R C	標準量（／m）
1	プライマ－AD－12（R）	0.2 kg
2	アクメボンドAD－102（下地）	0.2 kg
3	ニツタシートエキストラTS－L	
4	アクメボンドAD－008（シート）	0.2 kg
5	アグメボンドAD－OO8 ${ }_{\text {（ボリスチレン }}$	0.2 kg
6	断熱材（ポリスチレンフォーム）	
7	保讙層（コンクリート・別工事）	60mm以上

※立上りに保護層を打設しない場合は，立上り はTS－Sとし，接合部にはGTテープ40を挿入します。 ※アクメボンドAD－008の替りに両面テープを用いる こともできます。
ポリスチレンフォームをニッタシートエキストラの下に張り付けることはできません。

801 S

ポリエチレンフォームを断熱材として ニッタシートエキストラの下に張り付 けた外断熱工法です。
断熱効果だけでなく，下地の挙動変化に対する応力緩和や不陸調整 にも対応します。

下地	R C •ALC•PCa	標準量 $\left(/ \mathrm{m}^{2}\right)$
1	フフライマーAD－12（R）	0.2 kg
2	アクメボンドAD－102（下地）	0.2 kg
3	アクメボンドAD－102（断熱材片面）	0.2 kg
4	断熱材（ポリエチレンフォーム）	
5	アクメボンドAD－102（断熱材片面）	0.2 kg
6	アクメボンドAD－102（シート）	0.2 kg
7	ニッタシートエキストラTS－S	
8	カバーペイント	32頁参照

※ALCの場合，プライマーAD－12の標準塗布量は $0.3 \mathrm{~kg} / \mathrm{m}^{2}$ となります。
※断熱材端部には $300 \sim 500 \mathrm{~mm}$ の所で切り込みを入れます。
※断熱材の厚みは 50 mm 以下としてください。

807 S

熱伝導率に優れたポリウレタン フォームを断熱材としてニッタシート エキストラの下に張り付けた外断熱工法です。
クシ目状に塗布した接着層の間隙か ら通気をおこなう脱気工法でもあり ます。

下地	R C •ALC•PCa	標準量 $\left(/ \mathrm{m}^{2}\right)$
1	プライマ－U－002T	0.2 kg
2	ポンド550（下地）	1.0 kg
3	断熱材（ポリウレタンフォーム）	
4	アクメボンドAD－102（ボード）	0.2 kg
5	アクメボンドAD－102（シート）	0.2 kg
6	ニッタシートエキストラTS－S	
7	カバーペイント	32頁参照

※ポリウレタンフォームは弊社推奨のものを必ず使用 してください。
※断熱材の厚みは 50 mm 以下としてください。

複合防水工法

RP－I

ニッタシートエキストラとソフランシールの複合工法 で，役物回りのみソフランシールを施工する工法です。複雑な役物回りをシートを切り張りすることなく，シー ムレスな形状にすることができます。

下地	R C			
	シート施工部分	標準量（／m²）	ウレタン施工部分	標準量（／m²）
1	ブライマ－AD－12（R）	0．2kg	$\begin{array}{\|c\|} \hline \text { フラライマーU-002T } \\ \text { (下地面) } \end{array}$	0.2 kg
			$\begin{gathered} \text { フラライマーU-015 } \\ \text { (シート面) } \end{gathered}$	0.1 kg
2	アクメボンドAD－102（下地）	0.2 kg	ソフランシール	
3	アクメボンドAD－102（シート）	0．2kg	TNトップ	0.2 kg
4	こッタシートエキストラTS．S			
5	カバーペイントWTC	32頁参照		

※シート上にソフランシールを塗布する場合はプライマーU－015を塗布します。
出•入隅部にソフランシールを塗布する場合はクロスによる補強をおこないます。

RP－II

ニッタシートエキストラとソフラン シールの複合工法で，シート上にソフ ランシールを施工し，全面2層防水と する工法です。
シームレスで信頼性の高い工法です。

下地	R C	標準量 $\left(/ \mathrm{m}^{2}\right)$
1	プライマ－AD－12（R）	0.2 kg
2	アクメボンドAD－102（下地）	0.2 kg
3	アクメボンドAD－102（シート）	0.2 kg
4	ニッタシートエキストラTS－S	
5	プライマーU－015	0.1 kg
6	ソフランシール	
7	TNトツプ	0.2 kg

※出•入隅部のソフランシールにはクロスによる補強 をおこないます。

ソフランシールの詳細については別途ソフラン シールのカタログをご覧ください。
プライマー U－015 は，新設のシート下地の場合の み有効です。

3枚重ね部

※2 枚目のシートを張った段階で，ブチルコーキングを適量打設します。 ※全工法に必要です。

特殊な下地•形状の屋根の納まり

ALCロッキング構法

ALCロッキング構法とは壁面でのALC板取付け工法の一種で，ALC板上下2力所の取付け部を軸にして面内に回転する工法です。耐震性は非常に有効で，近年多用されていますが，防水施工面では，壁面と屋根面との動きが全く異なり，この取合い部の納まり には十分配慮する必要性があります。

ロッキング構法の機構

ALCロッキング構法シート施工図面

立上り入隅部および立上り天端の施工において挙動の異 なる動きに追従できることが必要となります。 そのために通常仕様に対して以下の点を追加します。

- 入隅部の増張りシートの幅は 300 mm 程度とします。
- 立上り壁面目地に幅 50 mm 程度のクラフトテープを張り付けます。

アーチ型特殊PCa

国土交通省大臣官房官庁学繕部監修
公共建築工事標準仕様書（平成31年版）公共建築改修工事標準仕様書（平成31年版）

種別	$\mathrm{S}-\mathrm{F} 1$	
工程	材料・エ法	使用量 $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$
1	プライマー塗り	$0.2(0.3)$
2	接着剤塗布	0.4
3	加硫ゴム系ルーフィングシート張付け	-
4	仕上塗料塗り	-

（注）•ALCパネル下地の場合は，工程1を（ ）内とする。
－公共建築改修工事標準仕様書S4S工法で既存防水層の表面に層間接着用プライマーを塗布した場合は，工程1を省略する。
－粘着層付又は接着剤付加硫ゴム系ルーフィングシートを使用する場合
は，工程 2 の接着剤使用量を $0.2 \mathrm{~kg} / \mathrm{m}^{2}$（下地面のみ）とする。
－仕上塗料の種類及び使用量は，特記による。

種別	SI－F1	
工程	材料•工法	使用量 $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$
1	プライマー塗り	$0.2(0.3)$
2	接着剤／断熱材	-
3	接着剤塗布	0.4
4	加硫ゴム系ルーフィングシート張付け	-
5	仕上塗料塗り	-

（注）•ALCパネル下地の場合は，工程1を（ ）内とする。 －公共建築改修工事標準仕様書S4SI工法で既存防水層の表面に層間接着用プライマーを塗布した場合は，工程1を省略する。
－粘着層付又は接着剤付加硫ゴム系ルーフィングシートを使用する場合は，工程 3 の接着剤使用量を $0.2 \mathrm{~kg} / \mathrm{m}^{2}$（下地面のみ）とする。

- 工程 2 の断熱材の張付けは，ルーフィングシート製造所の仕様による。
- 仕上塗料の種類及び使用量は，特記による。
（ Bin 2 S－F1

下地	RC•ALC•PCa	標準量 $\left(/ \mathrm{m}^{2}\right)$
1	プライマ－AD－12（R）	0.2 kg
2	アクメボンドAD－102（下地）	0.2 kg
3	アクメボンドAD－102（シート）	0.2 kg
4	ニッタシートエキストラTS－S	
5	カバーペイント	-

※ALCの場合，プライマーAD－12の標準塗布量は $0.3 \mathrm{~kg} / \mathrm{m}^{2}$ となります。
※ニッタシートエキストラTS－SNを使用する場合 は，工程3を省略する。

種別ST－F1

下地	R C－ALC P PCa	標準量（／m²）
1	フラライマ－AD－12（R）	0.2 kg
2	アクメボンドAD－102（下地）	0.2 kg
3	アクメボンドAD－102（断㙅析面）	0.2 kg
4		
5		0.2 kg
6	アクメボンドAD－102（シート）	0．2kg
7	こッタシートエキストラTS－S	
8	ガ゙ーペイント	－

※断熱材端部には $300 \sim 500 \mathrm{~mm}$ の所で切り込みを入れます。
※ALCの場合，プライマーAD－12の標準塗布量は $0.3 \mathrm{~kg} / \mathrm{m}^{2}$ となります。
※ニッタシートエキストラTS－SNを使用する場合は，工程6を省略する。

国土交通省「公共建築改修工事標準仕様書」（平成31年版）

3．1．4 改修工法の種類及び工程

表3．1．1 防水改修工法の種類及び工程

		1	2	3	4	5	6	7	8	9
			$\begin{aligned} & \text { 既 } \\ & \text { 存 } \\ & \text { 槑 } \\ & \text { 䍜 } \\ & \text { 平 } \\ & \text { 場 } \\ & \text { 撤 } \\ & \text { 去 } \end{aligned}$	$\begin{aligned} & \text { 既 } \\ & \text { 存 } \\ & \text { 断 } \\ & \text { 熱 } \\ & \text { 層 } \\ & \text { 澈 } \\ & \text { 去 } \end{aligned}$		既 存 防 裉 曾 再 場 撤 去	既 存 下 地 の 処 理	$\begin{aligned} & \text { 防 } \\ & \text { 水 } \\ & \text { 層 } \\ & \text { の } \\ & \text { 新 } \\ & \text { 設 } \end{aligned}$	$\begin{aligned} & \text { 断 } \\ & \text { 熱 } \\ & \text { 材 } \\ & \text { の } \\ & \text { 新 } \\ & \text { 設 } \end{aligned}$	保 護 層 の 新 設
POS 工法	（接着）	\bigcirc	－	－	\bigcirc	－	\bigcirc	\bigcirc	－	－
POSI工法	（接着）	\bigcirc	－	－	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	－
S3S 工法		－	－	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－
S3SI 工法		－	－	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	$\bigcirc * 6$	－
S4S 工法	（接着）	－	－	－	\bigcirc	－	\bigcirc	\bigcirc	－	－
S4SI 工法	（接着）	－	－	－	\bigcirc	－	\bigcirc	\bigcirc	$\bigcirc * 6$	－

（注）5．＊6印のある工程は，表3．5．2による。
（1）分類

新規防水工法の種別による区分
既存の保護層及び防水層の撤去•非撤去による区分既存防水工法による区分
（2）既存防水工法による区分
P－保護アスファルト防水工法＊7
S－合成高分子系ルーフィングシート防水工法
（注）＊7 印のある既存防水工法には，改質アスファルトシー ト防水工法を含む。
（3）既存の保護層及び防水層の撤去•非撤去による区分
3 －露出防水層撤去
$4-$ 露出防水層非撤去（立上り部等は，表3．1．1による）
0 －保護層及び防水層非撤去（立上り部等は，表3．1．1による）
（4）新規防水工法の種別による区分
S－合成高分子系ルーフィングシート防水工法
SI — 合成高分子系ルーフィングシート防水断熱工法

3．2．3 既存保護層等の撤去

既存保護層等の撤去は，次による。
（ア）保護コンクリート，れんが，モルタル笠木等の撤去は，ハ ンドブレーカー等を使用し，取合い部の仕上げ，構造体等 に影響を及ぼさないように行う。
（イ）既存防水層非撤去の場合は，防水層に穴をあけない。
（ウ）やむを得ず，質量 15 kg 以上のハンドブレーカー等を使用 する場合は，監督職員と協議する。
（エ）コンクリート中の鉄筋等を切断する場合は，撤去面より深 い位置で切断しポリマーセメントモルタル等で平滑に仕上 げる。
（オ）平場の既存保護層等を残し，改修用ドレンを設けない場合 は，ルーフドレン端部から 500 mm 程度まで保護コンクリー ト等の既存保護層を四角形に撤去する。
3．2．4 既存防水層の撤去
既存防水層の撤去は，次による。
（ア）平場及び立上り部の既存防水層（T1BI工法の場合は，断熱材を含む。）の撤去は，既存下地に損傷を与えない。
（イ）3．2．3（オ）により，既存保護層を撤去した後のルーフドレ ン周囲は，既存下地に損傷を与えないように，ルーフドレ ン端部から 300 mm 程度まで既存防水層を四角形に撤去する。
（ウ）S4S 工法，S4SI 工法のルーフドレン周囲の既存防水層は， ルーフドレン端部から 300 mm 程度まで，既存防水層を四角形に撤去する。
3．2．5 ルーフドレン回りの処理
（1）ルーフドレンの損傷，腐食，納まり等により，漏水のおそ れがある場合は，監督職員と協議する。
（2）既存の防水層及び保護層の撤去端部は，既存の防水層や保護層を含め，ポリマーセメントモルタルで，勾配1／2程度に仕上げる。
（3）POS 工法，POSI 工法において，改修用ドレンを設ける場合 は，特記による。なお，取付け方法等は，主防水材製造所の仕様による。
3．2．6 既存下地の処理
（1）既存下地の処理は，（2）から（6）までによる。 なお，補修箇所の形状，長さ，数量等は，特記による。
（2）既存防水層撤去後のコンクリート面又はモルタル面の既存下地の処理は，次による。
（ウ）S3S工法及びS3SI工法は，次による。
（a）既存下地に付着している防水層残存物等のケレン及 び清掃を行う。下地プライマー等が残存している場合は，ポリマーセメントペースト等の下地調整材を塗 り付ける。
（b）コンクリート面等のひび割れ部は，ポリマーセメント モルタルで補修する。ひび割れ幅が 2 mm 以上の場合 は，Uカットのうえ，ポリウレタン系シーリング材等 を充填する。
（c）既存下地の欠損部は，ポリマーセメントモルタルで平滑に補修する。支障のある浮き部は，撤去し，ポリ マーセメントモルタルで補修する。ぜい弱部は，ケレ ン等のうえ，ポリマーセメントペースト等で補修する。
（d）部分的な水はけ不良がある場合は，ポリマーセメン トモルタルで補修する。ただし，勾配不良がみられる場合は，監督職員と協議する。
（3）既存防水層の処理は，次による。
（エ）S4S工法及びS4SI工法（接着工法）は，次による。
（a）既存露出防水層の表面は，ゴミ等の異物を取り除き，水洗いを行う。
（b）既存露出防水層の損傷箇所，継目等のはく離箇所，浮き部分等は，切除し，ポリマーセメントモルタル等 で平滑に補修する。ただし，既存防水層の表面の著 しい劣化，既存防水層と下地の接着強度不足又は全体にわたるふくれや浮きがある場合は，監督職員と協議する。
（c）既存防水層撤去後の立上り部等の処理は，（2）（ウ） の（a）から（c）までによる。
（4）既存保護層の処理は次による。
（イ）POS工法及びPOSI工法（接着工法）は，次による。
（a）既存下地の処理は次による。
－既存下地に付着している異物はケレンし，全面を デッキブラシ等で清掃を行う。
－コンクリート面等のひび割れ部は，ポリマーセメン トモルタル等で補修し，ひび割れ幅が 2 mm 以上の場合は，Uカットのうえ，ポリウレタン系シーリング材等を充填する。
－既存下地の欠損部は，ポリマーセメントモルタルで平滑に補修する。支障のある浮き部は，撤去し，ポ リマーセメントモルタルで補修する。ぜい弱部は， ケレン等のうえ，ポリマーセメントペースト等で補修する。
－部分的な水はけ不良がある場合は，ポリマーセメン トモルタルで補修する。ただし，勾配不良がみられ る場合は，監督職員と協議する。
（b）既存目地の処理は次による。
－アスファルト防水工事用シール材を充填するなどし て，平たんに補修する。

- 突出している目地材は，撤去して平たんにする。
- 既存目地を脱気に利用する場合は，既存目地を撤去し，バックアップ材を用いてポリウレタン系シー リング材等を充填する。なお，既存目地周囲の欠損部は，ポリマーセメントモルタルを充填するなど し，平たんに補修する。
（c）既存保護層及び防水層を撤去した立上り部等の補修及び処置は，（2）（ウ）の（a）から（ c ）までによる。
（5）出隅及び入隅の処理は，次による。
（イ）合成高分子系ルーフィングシート防水又は塗膜防水を行 う場合の出隅は，通りよく 45° の面取りとし，入隅は，通 りよく直角とする。
（6）設備機器架台，配管受部，パラペット，貫通パイプ回り，手すり・丸環の取付け部，塔屋出入口部等の欠損部及び防水層末端部の納まり部の処理は，特記による。特記がなけ れば，監督職員と協議する。

施工手順

1．下地の確認•清掃

（！チェックポイント
下地の種類•形状，乾燥状態，清掃状態，劣化程度（改修の場合）

－下地条件が防水工事施工に適しているか確認し，不適切な場合は別途工事として補修 をおこないます。
－下地表面に突起物•砂・その他ゴミが付着 している場合は取り除きます。万一，油脂分などが付着している場合は，溶剤で十分清掃し取り除きます。

2．プライマー塗布
！チェックポイント
プライマーの種類，
塗布量，指触乾燥時間，
塗布範囲
1警告：
火気厳禁です。通風の悪い場所は強制換気 をおこないます。

－プライマーを十分に攪拌し，ハケまたは ローラーバケで均—に塗り残しのないよう に下地に塗布します。

－短辺目地にはクラフトテープを張り付けま す。
－出•入隅角，ドレン回り，パイプ回りなど の役物回りはGシートによる増張りをおこ ない，必要に応じてニッタシートエキスト ラの補強張りをおこないます。

5．ニッタシートエキストラ
（またはポリエチレンフォーム） の位置決め（墨出し）
（！チェックポイント
水勾配，施工範囲

－ニッタシートエキストラ（またはポリエチ レンフォーム）を張る前に墨出しをして寸法•位置を決めます。

6．アクメボンド塗布

（！）チェックポイント
接着剤の種類，
塗布量，指触乾燥時間塗布範囲
警告：
火気厳禁です。
通風の悪い場所は強制換気 をおこないます。

7．ポリエチレンフォーム張付け （ポリエチレンフォーム使用 による断熱工法の場合）
！チェックポイント
断熱材の種類•寸法，接着剤の種類，張付けの状態•隙間の状態警告：

静電気の発生に注意してく ださい。

8．ニッタシートエキストラ敷設張付け
（1）チェックポイント
シートの接合幅，転圧作業， シワ・フクレ・異物混入の有無

－アクメボンドAD－102を十分に攪拌し，ハケ またはローラーバケを用いて均一に下地に塗布します。
－ニッタシートエキストラ（またはポリエチ レンフォーム）を広げ，シート裏面（また はポリエチレンフォーム）にも同様にアク メボンドAD－102を塗布します（TS－SNは不要）。

－断熱材としてポリエチレンフォームを下地 に張り付け，ローラーバケで圧着します（断熱材の端部となる下地には，あらかじめG シートを張り付けておきます）。

- 断熱材の張付けは突合せとします。
- 断熱材端部には $300 \sim 500 \mathrm{~mm}$ の所で切り込み を入れます。
－断熱材張付け後，断熱材表面にアクメボン ドAD－102を塗布します。

－ニッタシートエキストラを水勾配と直角に水下から下地に張り付けます。
－張り付けた後，ウールローラーでエア抜き をおこない，大型ゴムローラーとハンド ローラーを用いてシート全面と接合部を転圧します。
－3枚重ね部はブチルコーキングを打設しま す。

9．シート端末処理
（1．チェックポイント
シーリング材の種類，
押え金物•笠木の形状，
取付け位置

－ニッタシートエキストラの端末は剥離防止 のため，押え金物を取り付けます。
－シーリング材を打設する方が適切と考えら れる部分には，防水補助材として打設しま す。

－露出工法：ペイントを塗布します。
（TS－CLは必要なし）
－押え工法：絶縁フィルムを敷設し，コンク リートを打設します（別途工事）。または決められた仕様に従って保護材を施工しま す。
－断熱押え工法：ポリスチレンフォームを シート上に張り付けます。その後コンク リートを打設します（別途工事）。

ニッタDSエ法（807Sエ法）

ポリウレタンフォームを用いる外断熱工法です。
ポリウレタンフォームは下地の不陸（凹凸）になじみにくいので，ボンド550を用いて施工するのが特徴です。高気密高断熱住宅への適用や，空調費用の軽減に効果があります。

施工手順

1．下地の確認清掃

下地の突起物，汚れを取り除 き，清掃します。

チェックポイント

下地の種類•形状，乾燥状態，清掃状態，劣化程度（改修の場合）

2．立上り，ドレン回りのプライマー・接着剤塗布

ポリウレタンフォームを張ら ない部分は通常工法とし，プ ライマーAD－12（R）とアクメ ボンドAD－102をローラーバケ で均一に塗布します。
！チェックポイント
塗布範囲，塗布量，指触乾燥
時間，ドレンの形状

3．役物回りの処理

出•入隅角，ドレン回り，パイ プ回りなどの役物回りには， Gシートによる増張りをおこ ない，必要に応じてニッタシ ートエキストラの補強張りを おこないます。
！チェックポイント役物回りの形状，増張りの部位

4．平場部のプライマーU－002 T 塗布

ポリウレタンフォームを張る部分はプライマーU－002Tを ローラーバケで均一に塗布し ます。

チェックポイント

プライマーの種類，塗布範囲塗布量，指触乾燥時間

5．ポリウレタンフォームの位置決め（墨出し）

ポリウレタンフォームを張る前に墨出しをして寸法•位置 を決めます。

（！
チェックポイント施工範囲

6．ボンド550の混合攪拌

ボンド550のA•B液を1：1の比率で低速電動攪拌機で3分間以上攪拌混合し，グリース状にします。

！チェックポイント

規定配合比，攪拌時間

7．ボンド550塗布

ボンド550をクシ目ゴテを用 いて，クシ目をたてながら塗布します。
！チェックポイント
塗布量，クシ目ゴテ形状 （ピッチ幅 30 mm ，山高さ 9 mm 程度）

市販品を加工して利用します

8．ポリウレタンフォーム張り

ボンド550塗布後，ただちに ポリウレタンフォームを敷き並べます。
その際，ボード間に隙間や段差が起きないように注意しま す。
！チェックポイント

9．ポリウレタンフォーム突合せ部のクラフトテープ張り
ポリウレタンフォームの突合 せ長短辺部にクラフトテープ を張り，圧着します。

チェックポイント
張付けの状態•隙間の状態

10．ポリウレタンフォーム端部のカットテープ増張り

ポリウレタンフォームの端部
は，カットテープで補強張り をします。
！チェックポイント
浮き・蛇行の有無

12．ニッタシートエキストラ敷設張付け

ニッタシートエキストラ裏面にもアクメボンド AD－102 を塗布し，指触乾燥後，水下 より通常工法で張ります。
！チェックポイント
張付け位置

13．保護仕上げ塗装

シート表面を清掃後，カバー ペイントを塗布します。
！チェックポイント
塗布量•塗りムラ

11．ポリウレタンフォーム表面にアクメボンド AD－102 塗布
ポリウレタンフォームの表面 にアクメボンドAD－102をロー ラーバケで均ーに塗布しま す。

！チェックポイント

塗布量，塗布範囲，指触乾燥時間

ニッタシートエキストラの標準納まり例［1］

展開図 | ニッタシートエキストラ |
| :--- |
| $\left.\begin{array}{l}\text { は，水下から水上に順に } \\ \text { 展，施工します。 }\end{array}\right)$ |

接合部

TS—K，TS—Lの場合

接合部（501 DPE）

3枚重ね部（全工法共通）

※2枚目のシートを張った段階で，ブチルコーキングを適量打設します。 ※全工法に必要です。

役物回り役物回りでは，Gシートを用いて水密性を保つようにします。

ドレン回り展開図

ニッタシートエキストラの標準納まり例［2］

パラペット（801工法の場合）

※ポリエチレンフォームには，端部から $300 \sim 500 \mathrm{~mm}$ の所で切り込みを入れる。

パラペット天端

ALCパラペット

縦引きドレン回り

パイプ回り

エキスパンションジョイント回り

横引きドレン回り

架台回り

架台回り（RP－I工法ソフランシール併用の場合）

入隅部位にカットテープによる補強張りを行う場合もあります。

設計上のポイント

1）下地条件

防水下地の出来具合は防水機能に直接影響を与えますので，下記の点に注意してください。
（1）表面：金ごて仕上げ程度とし，プライマーの接着力を確保するた め，鏡面仕上げはおこなわないでください。ただし，亀裂•凹凸•浮き・レイタンス・突起•欠落などのないようにします。
（2）コンクリート：貧調合としてください。コンクリート添加剤（減水剤など）を付与する場合は，メーカー仕様によってください。
（3）水勾配：コンクリートまたはALC，PCaなどの下地で確保します。 （露出工法： $1 / 100 \sim 2.5 / 10$ ，押え工法： $1 / 100 \sim 1 / 50$ ）
（4）入隅：通りよく直角とします。
（5）出隅：通りよく面取り（ $3 \sim 5 \mathrm{~mm}$ ）とします。
（6）立上り高さ：水上で 300 mm 以上とします。
（7）ルーフドレン：縦引きドレンを使って，スラブ面より低く，パラ ペットから 300 mm 以上離れた位置に堅固に取り付けます。
（8）パイプなどの突起物：突起物相互間およびパラペットなどから 300 mm 以上離れた位置に堅固に設置します。蒸気，温湯配管など は二重パイプとし中間に断熱材を入れます。
（9）水切り：躯体コンクリートでとります。
（10立上り部の打継部：屋根スラブ面より $100 \sim 150 \mathrm{~mm}$ 高い所としま す。
※塔屋の出入口高さ $: ~$ 仕上げ面より 150 mm 以上とします。

2）保護層

保護コンクリート層打設の場合は，下記のような制限があります（保護コンクリート層打設工事は別途工事となりますので，防水工事に は含まれません）。
（1）下地はRCに限ります。
（2）保護コンクリート層とシートの間は， 0.1 mm 以上の厚さのポリエチ レンフィルムまたは不織布を絶縁材として必ず敷設します。
③保護コンクリート層の厚さは 60 mm 以上必要です。
（4）伸縮目地は立上り面から 0.6 m 以内の位置と，平場部の縦横 3 m 程度の間隔に幅20～30mmで絶縁材に達するように設けます。
（5）立上り部の高さは $350 \sim 450 \mathrm{~mm}$ 程度とします。
（6）立上り底部には 20 mm 以上の厚さのバックアップ材をあてがいま す。
⑦フェンスなどは保護コンクリート層と別に設置します。

寒冷地のポイント

ニッタシートエキストラは広範囲な温度環境において優れた材料であり，寒冷地でも十分にその機能を発揮します。 ただし，多雪地で雪おろしを必要とする地域において露出工法は損傷のおそれがあり，不向きな場合があります。 また，施工時，施工後の凍害，水分の乾燥状態などの問題があるため，通常の設計上のポイント以外に下記の点に注意して設計•施工をおこなってください。

スラブ

- 気候が不安定な時期は工事中屋根力バーをかけることを考慮してください。
- 内断熱はスラブの乾燥を遅らせるので，外断熱としてください。
- 所定の乾燥時間をとれるような工期としてください。
- 脱気工法の採用も検討ください。

ドレン

- 縦引きドレンを使います。
- 凍結防止のためドレンヒーターを使います。
- 日当りのよい場所に設置します。
- 内樋方式が一般的です。

パラペット

- 立上り高さは積雪を少なくするため低くとります。
- アゴつき水切り方法は，凍害のトラブルが生じやすいので極力避けます。
- 天端勾配は内壁側勾配とします。
- 手すりはパラペットに直接取りつけないようにします。

保護・コンクリート層

- 冬期のエマルション系塗料の使用は避けてください。
- コンクリートは豆砂利 $25 \sim 35 \mathrm{~mm} \phi$ を使用し固練りとします。
- コンクリートの厚さは $60 \sim 100 \mathrm{~mm}$ 程度とします。
- 目地は立上りから 600 mm 以内に設け目地間隔は 3000 mm 以内とします。
- 目地幅は $20 \sim 30 \mathrm{~mm}$ とします。
- 立上り保護はコンクリートとします。

軒 先
－軒先は凍害のトラブルが起きやすいので，立下り部は防水層を巻き込み，水はけをよくします。

笠 木

－笠木は金属笠木とします。

- タイル，PCaなど左官材料は凍害を受けやすいため避けます。
- 温度差を考慮し，アルミで 2 m ，ステンレスで 3 m 以内とし，オープンジョ イント方式とします。
－笠木の出は壁面より 15 mm 以上とし，下りは 50 mm 以上とします。

ニッタシートエキストラの種類

ニッタシートエキストラは，EPDMを主成分としています。
JIS A 6008合成高分子系ルーフィングシート合格品（一部対象外商品あり）であり，耐久性と信頼性に優れた防水シートです。

特 長 •耐候性•耐オゾン性•耐摩耗性に優れています。

- 温度依存性が少なく，幅広い温度下でゴム状弾性を保持します。
- 酸，アルカリなど各種薬品に対して抵抗力があります。
- 屈曲，伸長の繰り返しによる物性変化が少ないシートです。

TS—S 汎用単層シート

特 長 汎用の均質加硫ゴムシートです。
－シート接合時の目安となるように端末から 100 mm の位置 に黄色のライン が入っています。

TS—SN のり付きシート

TS－Sタイプの片面に接着剤を塗布した均質加硫ゴムシートです。

- 接着剤を工場で機械塗布しているため，塗布量が均一です。
- 施工能率が高く，工期の短縮につながります。
- 施工者が少なくて済み，省力化が可能です。
- 狭い場所（ベランダなど）での施工が容易になります。

注意：冬季間，立上り部等で接着性が悪いと思われる場合，
あるいは，タッキネスの無くなったシートを使用する場合は，
シートの裏面にアクメボンドAD－102を塗布して施工ください。

TS—CL カラーシート

TS－Sタイプの表面に耐摩耗カラー層を加硫一体化したシートです。
－現場での塗装仕上げが省力化でき，経年時の塗り替えも節約できます。

注意：TS－CLはシボの深さにより同一ロットでも光線の加減で色違いのように見えることがあります。 カラーゴム層にチョーキングが生じた場合にはペイント塗替え工事を行わないでください。

TS—DPE 断熱材積層シート

TS－K 非加硫層積層シート

TS—L 粘着層積層シート

特 長 TS－Sタイプの裏面に30倍発泡の溝付きポリエ

 チレンフォームをラミネートさせたシートです。－下地から発生するガス類や水蒸気塊を四方に分散し，脱気装置から排出させる機能があります。
－ポリエチレンフォーム層が断熱効果を持ち，省エネル ギーに役立ちます。
－ポリエチレンフォームが下地の不陸を調整し，表面は均

- になり，きれいに仕上がります
- ポリエチレンフォームとシートを同時に張るため施工の労力を省くことができます。

特 長 TS－Sタイプの片面に非加硫層を圧延したシート です。
－非加硫層に応力緩和作用があり，下地から加硫層に加わ る応力を非加硫層で吸収，分散させる為，防水シートの耐久性を向上させます。
－柔軟な非加硫層が展着されていますので，接着力をより向上させ，経年による接着力の低下が小さいです。
－比較的低温での接着性が良いので寒冷地や冬期の施工に有利です。

特 長 TS－Sタイプの片面に自着層（粘着層）を積層させ た保護コンクリート工法用の防水シートです。地下室，共同溝等に用いられています。
－自着層に応力緩和作用があり，下地から黒ゴム層に加わ る応力を吸収分散させる為，防水シートの耐久性を向上 させます。
－有機溶剤系接着剤を使用出来ない密閉された場所に適し ます（アクメボンドAD－008使用の場合）。

ニッタシートエキストラの性能

JIS A 6008 による試験結果

	試 験	内 容	JIS A 6008均質加硫 ゴム規格	長手方向	幅方向	長手方向	幅方向
	引張強さ	$\mathrm{N} / \mathrm{cm}^{2}(\mathrm{~N} / \mathrm{cm})$	750 以上	958	961	971	977
	伸び率	\％	450以上	520	527	522	530
引裂性能	引裂強さ	$\mathrm{N} / \mathrm{cm}(\mathrm{N})$	250 以上	317	322	329	333
温	試験温度 $60^{\circ} \mathrm{C}$	引張強さ※ $\mathrm{N} / \mathrm{cm}^{2} \quad(\mathrm{~N} / \mathrm{cm})$	230 以上	632	639	640	649
	試験温度 $-20^{\circ} \mathrm{C}$	伸び率\％	150 以上	219	224	222	231
加熱伸	縮性状	伸縮量mm	伸び2以下縮み4以下	$\begin{gathered} \text { 縮み } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { 縮み } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { 縮み } \\ 0.5 \end{gathered}$	$\begin{gathered} \text { 縮み } \\ 0.5 \end{gathered}$
		加熱処理	80 以上	97	98	101	103
化	引張強さ	促進暴露処理	80 以上	99	99	99	98
$\begin{aligned} & \text { 理 } \\ & \text { 後 } \end{aligned}$		アルカリ処理	80 以上	99	98	97	98
引		加熱処理	70 以上	87	88	87	86
性	比 \%	促進暴露処理	70 以上	97	98	96	98
		アルカリ処理	80 以上	98	97	98	99
伸び時の劣化性状		加熱処理	いずれの試験片 にもひび割れが ないこと	格		合	格
		促進暴露処理		合 格		合	格
		オゾン処理		合	格	合	格
接合性状		無処理	基準線からの ずれ及びはく離の長さが5 mm 以下で か つ有害なず所のないこと	合	格	合	格
		加熱処理		合	格	合	格
		アルカリ処理		合	格	合	格

※試験内容の欄で単位が併記されているものは，均質加硫ゴムと一般複合加硫ゴム規格の違いによるものです。括弧内は一般複合加硫ゴムの単位です。上記試験結果は，測定値であり保証値ではありません。

JIS A 6008 による試験結果

					1.2		1.5
	試 験	内 容	JIS A 6008均質加硫 ゴム規格	長手方向	幅方向	長手方向	幅方向
	引張強さ	$\mathrm{N} / \mathrm{cm}^{2}(\mathrm{~N} / \mathrm{cm})$	750 以上	954	942	954	936
	伸び率	\％	450以上	525	530	528	534
引裂性能	引裂強さ	N／cm（N）	250 以上	331	337	322	328
温	試験温度 $60^{\circ} \mathrm{C}$	引張強さ※ $\mathrm{N} / \mathrm{cm}^{2}(\mathrm{~N} / \mathrm{cm})$	230 以上	654	647	639	620
	$\begin{gathered} \text { 試験温度 } \\ -20^{\circ} \mathrm{C} \end{gathered}$	伸び率\％	150 以上	212	218	216	227
加熱伸綄	縮性状	伸縮量mm	伸び2以下縮み 4 以下	$\begin{gathered} \text { 縮み } \\ 0.5 \end{gathered}$	縮み 0.5	$\begin{gathered} \text { 縮み } \\ 0.5 \end{gathered}$	縮み 0.5
		加熱処理	80 以上	101	104	102	103
化	引張強さ 比 \％	促進暴露処理	80 以上	99	97	103	101
$\begin{aligned} & \text { 理 } \\ & \text { 後 } \end{aligned}$		アルカリ処理	80 以上	98	98	98	100
引		加熱処理	70 以上	88	85	85	84
性	$\text { 比 } \%$	促進暴露処理	70 以上	96	97	94	95
		アルカリ処理	80 以上	98	97	96	96
伸び時の劣化性状		加熱処理	いずれの試験片 にもひび割れが ないこと	合	格	合 格	
		促進暴露処理		合	格	合	格
		オゾン処理		合	格	合	格
接合性状		無処理	基準線からの ずれ及びはく離の長さが5 mm以で，か つ有害なず れなど異常箇所のないこと	合	格	合	格
		加熱処理		合	格	合	格
		アルカリ処理		合	格	合	格

※試験内容の欄で単位が併記されているものは，均質加硫ゴムと一般複合加硫ゴム規格の違いによるものです。
括弧内は一般複合加硫ゴムの単位です。上記試験結果は，測定値であり保証値ではありません。

副資材一覧表

ニッタシートエキストラの機能を最大限に引き出すために，弊社純正の副資材と組み合せて使います。

品 名	荷 姿	材質又は主成分	用 途
下地調整材			
タイト A	18 kg ／角缶	アクリル樹脂（エマルション系）	下地処理
プライマー			
プライマーA D－12R	15 kg ／角缶	クロロプレンゴム（溶剤系）	RC•PCa 用
プライマーA D－12	15 kg ／角缶	クロロプレンゴム（溶剤系）	ALC－PCa－RC 用
プライマーAD－12AQ	15 kg ／角缶	クロロプレンゴム（エマルション系）	$\mathrm{RC} \cdot \mathrm{PCa} \cdot \mathrm{ALC}$ 用 無溶剤タイプ
プライマーU－002T	15 kg ／角缶	湿気硬化型ウレタンプレポリマー	ニッタD S エ法用，ソフランシール用
プライマーPV	15 kg ／角缶	クロロプレンゴム（溶剤系）	P V C 下地用
プライマーU－015	3.2 kg セット（A液：0．2kg／缶 B液：3．0kg／缶） 16kgセット（A液： 1 kg ／缶 B液： $15 \mathrm{~kg} /$ 缶）	A液：イソシアネート（溶剤系） B 液：クロロプレンゴム（溶剤系）	ゴムシート下地用・ウレタン下地用
プライマーFR	$2.8 \mathrm{kgセット}$（A液：2．1kg／角缶 $\mathrm{B}_{\text {液：}}$ ： $07 \mathrm{~kg} /$ 角缶）	A液：エポキシ樹脂（溶剤系） B液：イソシアネート（溶剤系）	F R P 下地用
接着剤			
アクメボンドAD－102	15 kg ／角缶	クロロプレンゴム（溶剤系）	一般用
アクメボンドAD－102AQ	15 kg ／角缶	クロロプレンゴム（エマルション系）	無溶剤タイプ
アクメボンド A－0 0 8	15 kg ／角缶	アクリル変性ゴム共重合体 （エマルション系）	ポリスチレンフォーム張付け用
ボンド 550	A液： 5 kg ／角缶 B液： 5 kg ／角缶	A液：ウレタンプレポリマー B液：アミン系硬化剤	ニッタ S 工法用
テープ状シール材•補強張りシート			
GTテープ30	$0.8 \mathrm{mmt} \times 30 \mathrm{~mm} \times 40 \mathrm{ml} \times 5$ 本 $/$ 箱	ブチルゴム（自然加硫）	シート接合部•端末用
GTテープ 40	$0.8 \mathrm{mmt} \times 40 \mathrm{mmw} \times 20 \mathrm{ml} \times 6$ 本／箱	ブチルゴム（自然加硫）	シート接合部用
Gシート	$1.2 \mathrm{~mm} \times 100 \cdot 200 \cdot 300 \mathrm{mmw} \times 10 \mathrm{ml}$／本	ブチルゴム（非加硫）	役物回り用（増張り用）
カットテープ	$1.1 \mathrm{mmt} \times 100 \cdot 120 \cdot 150 \cdot 200 \mathrm{mmw} \times 20 \mathrm{ml}$	EPDM	補強張り用
不定形シール材			
ブチルコーキング	$330 \mathrm{ml} \times 20$ 本／箱	ブチルゴム	シート端末用
仕上塗料			
カバーペイントWTC	15 kg ／角缶（標準5色）	変性アクリル樹脂（エマルション系）	一般用
カバーペイントHTC	15 kg ／角缶（標準4色）	EPDM（溶剤系）	一般用
カバーペイントY T C	15 kg ／角缶（標準3色）	変性アクリル樹脂（エマルション系）	高反射•高耐候性塗料
S D フロアコート	20 kg ／角缶（標準3色）	骨材入りEVA樹脂（エマルション系）	軽歩行用
脱気装置			
ベントS	2個／箱	ステンレス	脱気筒
Vテープ	$0.25 \mathrm{~mm}^{\mathrm{m}} \times 50 \mathrm{mmw} \times 30 \mathrm{ml}^{\prime} \times 10$ 本 $/$ 箱	シリコンゴムラミネート不織布	脱気用テープ
押え金物•笠木			
アルミアングル	2 ml ／本	アルミニウム押出し型材	端末押え金物
アルミ水切	2 ml ／本	アルミニウム押出し型材	ハンガー式水切材
アルミ笠木	$4 \mathrm{~m}^{\prime} /$ 本	アルミニウム押出し型材	笠木
成型品			
ドレン NV •S	1セット／箱	本体：EPDM キャップ：アルミダイキャスト	改修用ドレン

下地調整材

下地調整剤

タイトA

アクリル樹脂を主成分とした下地処理用樹脂です。特に，混和性，ハケはなれ性，レベリング性に優れた材料です。

タイトAによる下地調整をおこなった場合は，状況により次工程のプライマーAD－12（R）の塗布を省くことができます。

項 目	タイトA
外 観	乳白色
主成分	アクリル樹脂（エマルション系）
イオン	カチオン
密度 $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.02

標準配合

攪拌は混合不足によるダマの残らないように電動攪拌機を用いておこなってください。施工は，下地面にすり込んでから，決められた厚さに塗り付けます。

	タイトA				
材 料 名	タイトA	セメント	ケイ砂	水	施工面積 $\left(\mathrm{m}^{2}\right)$
ポリマーセメントペースト（樹脂ノロ）	18	40		14	$120 ~ 200$
ポリマーセメントモルタル $(1 \mathrm{~mm})$	18	40	80	14	$50 ~ 60$

タイトAの配合は，下地の状態により水で調整してください。ケイ砂は5号または6号を標準とします。

標準乾燥時間

材 料 名	タイトA	
季節	夏期	冬期
プラ合	2時間	1日
ポリマーセメントペースト	1日以上	2日以上
ポリマーセメントモルタル	2日以上	3日以上

塗布後，夏期で7日，冬期で14日以上経過した場合 は，タイトAを水で2倍に希釈したものを再塗布（0．1 $\left.\sim 0.2 \mathrm{~kg} / \mathrm{m}^{2}\right)$ するか，プライマーAD－12（R）を塗布 してから防水層の施工をおこないます。
※タイト A を水で 2 倍に希釈したもの。

プライマー

項 目	プライマ－AD－12R	フライマ－AD－12	ブライマ－AD－12AQ
外 観	弁柄夜	弁柄夜	灰白色液
主成分	$\begin{gathered} \text { 合成ゴム (クロロプレンゴム) } \\ \text { 樹脂 (フェノール樹脂) } \end{gathered}$	$\begin{gathered} \text { 合成ゴム (クロロプレンゴム) } \\ \text { 樹脂(フェノール樹脂) } \end{gathered}$	変性クロロプレンゴム
主溶剤	トルエン	トルエン	－
比 重	0.90	0.93	1.01
混合比	－	－	－
標準㴽布量（ $\mathrm{kg} / \mathrm{m}^{2}$ ）	0.2 （RC，PCa下地）	0.3 （ALC下地）	0.1
指䖵乾弾時間（ $22^{\circ} \mathrm{C}$ 時）	$15 \sim 20$ 分	20～30分	40～60分

プライマーU－002T

ウレタン系のプライマーで，下地にボンド550をより強く接着させ るためや，ソフランシールを直接施工するコンクリート・モルタル下地に使用します。

プライマーPV

クロロプレンゴムを主成分とするプライマーで，塩ビシートに塗布することによりニッタシートエキストラとの接着を可能にしま す。

プライマーU－015

2 液性の溶剤型プライマーでA液と B 液を混合攪拌し，ニッタシー トエキストラ上にソフランシールを塗り重ねる時に使用します。
また，既設ウレタン塗膜に塗布することによりニッタシートエキス トラとの接着を可能にします。

プライマーFR

エポキシ樹脂を主成分とする2液性のプライマーで，A液とB液 を混合攪拌しFRPに塗布することによりニッタシートエキストラ との接着を可能にします。

項 目	プライマーU－002T	プライマーPV	プライマーU－015	プライマーFR
外 観	淡黄色透明液	淡黄色液	A液：褐 色 液 B液：淡黄色液	A液：透明色液 B液：褐 色 液
主 成 分	ウレタンプレポリマー	クロロプレンゴム	A液：イソシアネート溶液 B 液：クロロプレンゴム	A液：エポキシ 樹 脂 B 液：イソシアネート溶液
主 溶 剤	トルエン・酢酸エチル	トルエン，MEK， シクロヘキサノン	A液：トルエン B液：トルエン・MEK	A夜：トルエン・MEK・メチルイソブチルケトン B液：トルエン
比 重	0.97	0.84	A液： 0.94 B液： 0.87	A液： 0.98 B液： 0.92
混 合 比	－	－	$A: B=1: 15$	A： $\mathrm{B}=3: 1$
標準塗布量（kg／m ${ }^{2}$ ）	0.2	0.1	0.1	0.15
指触乾燥時間（ $25^{\circ} \mathrm{C}$ 時）	20～30分	15～20分	20～30分	15～20分

警告：溶剤を含む製品は火気絶対厳禁とし，室内，地下等密閉場所あるいは通気不良の場所では，防爆型換気装置を必ず取り付けてください。使用後は缶を密閉して保管してください。

接着剤

アクメボンドAD－102

クロロプレンゴムを主成分とし，特殊合成樹脂，その他の薬品を適量混合した溶剤型接着剤です。プライマーとシート間，シートとテープ状シール材間， シート相互間などの必要箇所に塗布し，強固な接着力を発揮します。

アクメボンドAD－102AQ

クロロプレンゴムを主成分とする水性エマルション系の接着剤で，安全性の高い無溶剤タイプです。ニッタシートエキストラTS－S N と組み合わせて使用します。

アクメボンドAD－ 008

アクリル特殊共重合樹脂を主成分とする水性接着剤です。溶剤を全く含まな いため，ポリスチレンフォームをシート上に接着させるのに使います。

ボンド550

ウレタン系の 2 液性接着剤です。 A 液（主剤）と B 液（硬化剤）を混合摜抖し てグリース状にして，ポリウレタンフォーム専用の接着剤として使います。ク シ目状に塗布することにより，不陸を調整し，通気層を形成し ポリウレタン フォームと下地を強固に接着させます。

項 目	アクメボンドAD－102	アクメボンドAD－102AQ	アクメボンドAD－008	ボンド550
外 観	淡黄色液	灰色液	乳白色液	A液：淡黄色透明液 B液：淡黄色透明液
主成分	合成ゴム（クロロプレンゴム）樹脂（フェノール樹脂）	変性クロロプレンゴム	アクリル変性ゴム共重合体 （水性エマルション系）	A液：ウレタンプレポリマー B液：ポリアミン系硬化剤
主 溶 剤	トルエン・石油ナフサ	－	－	－
比 重	0.90	1.06	1.02	A液： 1.08 B液： 1.00
混 合 比	－	－	－	$A: B=1: 1$
標準塗布量（kg／m ${ }^{2}$ ）	下地面0．2，シート面0．2	下地面0．1 （TS－SNを使用）	断熱材0．2，シート面0．2	1.0
指触乾燥時間（ $25^{\circ} \mathrm{C}$ 時）	20～30分	40～60分	$60 \sim 90$ 分	－
可使時間（ $25^{\circ} \mathrm{C}$ 時）	－	－	－	100分

警告：溶剤を含む製品は火気絶対厳禁とし，室内，地下等密閉場所あるいは通気不良の場所では，防暴型換気装置を必ず取り付けてください。使用後は缶を密閉して保管してください。

テープ状シール材•補強張りシート

Gシート

ブチルゴムを主成分とした非加硫ゴムシートです。非常に柔軟性，粘着性に富 み，複雑な形状にもよく馴染み，役物回りの増張りとして使います。

G Tテープ

ブチルゴムを主成分とした自然加硫ゴムテープです。断熱工法の場合にニッ タシートエキストラの接合部に使用し，経年変化により架橋して接着性を向上させます。
カットテープ
EPDMを主成分とした加硫ゴムの裏面に非加硫層を圧延したテープです。応力緩和作用があり，断熱材の仕舞部や目地処理等の補強張りとして使います。 テープ展開時の表側が接着剤塗布面（張付け側）になります。

項 目	Gシート			GTテーフ		カットテープ			
厚さ（mm）	1.2			0.8		1.1			
幅（mm）	100	200	300	30	40	100	120	150	200
長さ（m）	10			40	20	20			
1 箱（本）	4	2	1	5	6	6	5	4	3

不定形シール材

ブチルコーキング

水密•気密性を確保するために用いる不定形シール材です。ブチルゴムを主成分とし，防水性•耐候性•耐薬品性に優れ，充填後硬化してゴム弾性体に近い性状を示します。必要に応じてシートの端末処理，3枚重ね部などに防水補助材として使います。

主 成 分	溶 剤	色
ブチルゴム	ミネラルスピリット	グレー

仕上塗料

仕上塗料

カバーペイントWTC

変性アクリル樹脂を主成分とした水性エマルション型塗料です。引火性がなく臭気もわずかで作業性が良く，防水層を傷めません。 カバーペイントHTC
EPDMを主成分とした溶剤型塗料です。乾燥が速く，密着性•光沢•隠蔽性に優れます。
カバーペイントYTC
変性アクリル樹脂を主成分とした水性エマルション型の高耐候•遮熱塗料です。含有している紫外線安定剤（ハルス）と高反射顔料により優れた耐候性と高反射効果があります。

○ライフサイクルの低減：最長10年間塗替えをせずに防水層を保護することができるので，4年ごとの定期的な塗替えが不要になります。

○ヒートアイランド対策：防水層表面の温度上昇を最大 $15^{\circ} \mathrm{C}$（当社比）抑えることにより，防水層の熱劣化軽減と室内の省エ ネに効果があります。

○グリーン購入法適合：近赤外線域における日射反射率が 50% 以上であり，グリーン購入法（国等による環境物品等の調達の推進等に関する法律）調達品目に適合します。

各カラーによる日射反射率

カ ラ -	日射反射率（\％）
ライトグレー	67.0
グレー	60.0
ライトグリーン	61.3

赤外ランプによる表面温度変化

分

SDフロアコート

耐摩耗性に優れた骨材を既配合した軽歩行用塗料です。厚塗りが可能で吸水率が少なく，防滑性があります。清水を 1～3\％加 えて復唞してから使います。

項 目		WTC	カバ	HTC	－ペイントVTC	－
項 目	シルバー	シルバー以外	シルバー	シルバー以外	カバーベイントY゙C	SDフロアコート
主 成 分	変性アクリル樹脂		EPDM		変性アクリル樹脂	骨材入り E V A
主 溶 剤	－		トルエン		－	－
比 重	1.11	1.28	0.90	$0.94 \sim 0.96$	1.28	1.60
指触乾燥時間（ $20^{\circ} \mathrm{C}$ 時）	2時間		15～20分		2時間	2時間
標準塗布量（kg／m ${ }^{2}$ ）	0．2以上	0．3以上	0．25以上	0．35以上	0．3以上	0．8以上

[^0]
ドレンNV•S

ドレンNV•S は，旧防水層から新しい防水層へと確実に結ぶ合成ゴム製ドレンカバー本体とアルミ製ストレーナーのセット商品です。

ドレンNV•Sは，改修工事で新しく防水工事を施工する際に重要な役割を果たします。
二重ドレンとして下地水分を逃がすことにより，新しい防水層へのより良い機能を発揮します。

特長

－本体はEPDMを主成分とした成型品です。軽量で，耐久性，耐候性に優れ，サビや腐蝕の心配がなく，簡単に設置ができます。
－シートとの接合は，段差が目立ちにくく，下地ともなじみやすい です。
－ストレーナーは，美観性に優れたアルミダイキャスト製で，ステ ンレスバネにより，簡単で確実に本体に納められます。
－従来のハツリエ法よりも手間と余分な時間が省けます。

NVタイプ（タテ型）

（70•90併用）
直径 160 mm
高さ 110 mm

Sタイプ（ヨコ型）

ドレン NV				単位：mm		
E F G H I NV－50 400 400 150 37 NV－70 400 400 150 60 NV－90 400 400 150 80						

ドレン S			単位：mm			
	A	B	C	D	E	
S－50	400	400	400	37	45	
S－70	400	400	400	60	70	
S－90	400	400	400	80	90	

注意：ドレンNV•Sを用いる場合には，既存のドレンに比べ排水径が小さくなりますので，雨水排水設計に対し，ドレンNV•Sの径が十分であ るか検討し，当初の設計値を確認してください。
既存ドレンの構造によっては，排水管のエルボ等に引っかかる場合があります。その場合には，先端を切断して使ってください。 ストレーナーのねじが緩んでいる場合はプラスドライバーで締めなおしてから使ってください。
溶剤•油•薬品等が付着すると変色•破損の原因となることがあります。
ストレーナーの製品図面が必要な場合は，別途ご請求ください。

脱気装置

脱気装置

ベントS標準施工手順

1．ニッタシートエキストラ施工（張付け）後，目地また はVテープ交差上のシートを切開し，円形に脱気口と なる孔を開けます。

2．ベント S 本体の裏側にアクメボンドAD－102を塗布し，円盤の裏側外周部にGTテープ30を張り付けます。 シート下地にもアクメボンドAD－102を塗布して，開 けた孔の真上になるようにベントSを密着し，ビスで下地に固定します。

3．ベントSの円盤部表面にアクメボンドAD－102を塗布し，筒の付け根には，GTテープ30を張り付けます。
同様にアクメボンドAD－102を塗布したニッタシート エキストラを増張りし，シート端末にブチルコーキン グを打設します。

ベントS寸法規格

付属品：プラグレスアンカー 4 本 （呼び径： 5.0 mm 首下長さ ： 35 mm 穿孔径 ： 4.5 mm ）

ベントS

耐久性に優れたステンレス製の脱気装置です。下地から発生する水蒸気を排出してシートのフクレを防止します。ニッタシートエ キストラTS－DPEまたはVテープと併用すると，さらに効果的で す。
Vテープ
不織布の表面にシリコンゴムをラミネート加工したテープで す。下地にテープ裏面の両端に積層しているブチルゴム系粘着層を格子状に張り付ける事により，蒸気化した下地水分をベン トSまで導く役割があります。

ベントS取り付け割付図

ベントSは水上に $50 \mathrm{~m}^{2}$ に 1 カ所（防水層にTS－DPE施工の場合は $50 \sim 70 \mathrm{~m}^{2}$ に 1 ヵ所）程度の割合で取り付けます。

片勾配の場合

両勾配の場合

ベントS納まり例

アルマイト処理をしたアルミニウム押出し型材で，耐蝕性に優れます。
ニッタシートエキストラの張り仕舞端末のシートの押え金物や水切り，笠木として使います。
押え金物は下地に合わせたビスを用いて両端から 100 mm 以下， 5 本以上 $/ 2 \mathrm{~m}$ で固定してください。

アルミアングル

※ 1 別途ジョイント部材も用意しております。
$※ 2$ 別途コーナー部材 $(200 \times 200 \mathrm{~mm})$ もあります。

アルミ水切

品 種	W（mm）
T－30K	30
T－45K	45
T－60K	60

アルミ笠木

品 種	W (mm)	有効パラペット (mm)	厚さ (mm)
$\mathrm{T}-140$	140	$90 \sim 110$	1.5
$\mathrm{~T}-175$	175	$125 \sim 145$	1.5
$\mathrm{~T}-200$	200	$150 \sim 170$	1.6
$\mathrm{~T}-225$	225	$175 \sim 195$	1.8

本体定尺：4，000mm
コーナー部： $500 \mathrm{~mm} \times 500 \mathrm{~mm}$

工具一覧

ニッタシートエキストラの施工は，必要に応じて下記の工具を用います。

用具一覧表

区 分	用具•器具名（カッコ内用途）
保安用具	手袋•靴・ヘルメット・防じんマスク・安全帯（体の保護）防毒マスク・送風器（換気の悪い場合），保護メガネ（目の保護）炭酸ガス，泡または粉末消火器（消火設備）
養生用具	ポリエチレンシート・ポリプロピレンシート（材料•器具の保護） クラフト紙（㨘拌•施工場所の養生），マスキングテープ（末端の養生•汚れ防止）
清掃用具	ワイヤブラシ・ホウキ・チリトリ・電気掃除機・ブロアー
下地処理用具	```サンドペーパー•ディスクサンダー•皮スキ•ナイフ•ケレン棒 ハンマー•タガネ(コンクリート•モルタルハツリ) 左官バケ(ポリマーセメントペースト塗布) 左官ゴテ(ポリマーセメントモルタル塗布)```
塗布用具	ハケ・ローラーバケ（プライマー，接着剤，仕上塗料塗布） ゴムベラ・ゴムゴテ（塗膜材塗布，材料かき出し） クシ目ゴテ（接着剤塗布）電動覩拌機（材料䂓拌） ポリ容器•小缶（材料摫抖•小分け），計量器（計量）
シート張付け用具	メジャー・マスキングテープ・チョークリール（測量•墨出し） ハサミ・カッター（シート栽断），コーキングガン・コーキング用へラ（シーリング柎投） ハンドローラー・転圧ローラー・ステッチャーローラー（シート張付け用）
取付け用具	スパナ・ドライバー（ネジ・ボルト締めはずし），電気トリリ（穴あけ），グラインダー（切断）
その他用具	コードリール（電気接続），筆記用具（筆記•記録）

①保管上の注意

1）シート防水材について

－シートの包装紙は出荷•輸送時のシートの識別，保護のため のものです。長期間保管や降雨にさらされた場合は，包装紙 が変色したり，破れることがありますが，シートの品質•性能には影響ありません（TS－SNは除く）。
－シートを長期間井桁に積むと，シートの自重でクセがつくこ とがあります。シート展開時の施工がおこないにくくなりま すので注意してください（TS－DPEを縦置きする場合は，ミ ミの部分を上にしてください）。

2）TS—SNについて
－1本のシートのうち残量が出た場合は，できるだけ早い時期に使いきってください。
－接着性能が十分発揮できるシート製造後 6 力月以内に使って ください。（ 6 カ月以上経過したTS－SNについては，アクメ ボンドAD－102を塗布して使用して下さい。）

3 ）副資材について

－副資材は高温や直射日光を避けて，乾燥した冷暗所に保管し てください（特にカバーペイントWTC－10には活性な顔料を使用していますので，高温時には反応によりガスが発生する ことがあります）。
－エマルション系を主成分とする材料は， $0^{\circ} \mathrm{C}$ 以下の気温に放置すると凍結のおそれや，成分が変質することがあります。
－缶類は中身が漏れないように横倒しせずに開口部を上にして置き，破損しないように扱ってください（特にカバーペイン トWTC－10は口金部にガス抜きのための特殊な細工がしてあ りますので，注意してください）。
－缶類の取っ手は，手でさげるためのものです。ロープなどで吊り下げると取っ手が取れて落下する恐れがありますので，そ のような使用は避けてください。
－取扱いに際し，関連法規の規制を受けるものがあります。指定数量を順守し，火気に注意して安全な場所に保管してくだ さい。
有機溶剤を含んでいますので，安全と衛生に注意してください。

商品名	消防法	労働安全衛生法
$\begin{gathered} \text { AD-12(R), } \\ \text { PV, FR, } \\ \text { AD-102, } \\ \text { U-015, U-002T, } \\ \text { カバーペイントHTC } \end{gathered}$	危険物第 4 類第 1 石油類 引火点： $21^{\circ} \mathrm{C}$ 末満 指定数量：200l	第2種有機溶剤含有物 （危険等級 II）
ボンド550	危険物第 4 類第 4 石油類 引火点： $200^{\circ} \mathrm{C}$ 以上 $250^{\circ} \mathrm{C}$ 未満指定数量：6，000l	－

※各種ソフランシールの危険物類別はソフランシールのカタロ グをご覧ください。
－有機溶剤を含んだ材料をみだりに摂取，吸引したり，その目的のために所持すると罰せられることがありますので，注意 してください。
－一度開缶したものは使いきってから産廃処理してください。 やむをえず残った材料は完全密封し，できるだけ早い時期に使いきってください。
－取扱いする際には，必ず製品ラベルの注意事項をお読みくだ さい。
必要な場合は，安全データシート（SDS）を参照ください。

－施工上の注意

1）天候について

－施工時の天候が降雨時，降雨が予想される場台，降雨後で下地が未乾燥の場合は，施工を中断してください。

- 強風で施工に支障のある場合は，施工を中断してください。
- 外気温が $5^{\circ} \mathrm{C}$ 以下で防水下地および断熱材，シート間の接着 が妨げられるおそれのある場合は施工しないでください。

2）下地について

- 施工する下地は十分に乾燥させてください。
- コンクリートの水分が密閉されやすいデッキプレート型枠コ ンクリート下地•断熱材打込み下地や，改修工事におけるコ ンクリート保護層下地，寒冷地などで乾燥が不十分な下地は，脱気工法の採用を検討してください。
－下地の含水の程度は，晴天時に下地を 1 m 角程度の黒いビ ニールシートなどで覆って周囲4辺を密閉した後，一昼夜経過後の下地の湿り具合（ぬれ色有無等）で確認する方法があ ります。
－下地のエフロ，レイタンスは確実に取り除き，油の付着があ る場合はハツリ取ってください。
－下地が粗面で劣化している場合はポリマーセメントモルタル等で下地調整をおこなってください。
－改修の場合は必要に応じて適切な下地処理をおこなってくだ さい。

3 ）作業環境について
－通気の悪い場所（地下•室内等）での溶剤型プライマー，溶剤型接着剤の使用は避けてください。状況に応じて防爆型換気装置を設置してください。
－作業場所周辺は材料の飛散等により，汚れないようにあらか じめ養生してください（プライマーや接着剤は，糸をひいて風によって飛散することがあります）。

4）防水材料について

- 業務用とし，カタログ記載の仕様に限定して使ってください。
- 飲料水および食品と直接触れる使い方はしないでください。必要な場合は弊社標準施工要領書を参照ください。

5）下地調整材について
－タイトAは，アクリル樹脂を主成分とした下地処理用樹脂で す。皮張り防止のため，開封後は必ず密閉して，貯蔵使用前 によく撹拌してご使用ください。

[^1]6 ）プライマー，接着剤，ペイント類の扱いについて
－使用時にはよく撹拌してください（特にペイント類は固型分 が缶底に沈降している場合があります）。
－水や溶剤を加えて希釈しないでください（SDフロアコート は除く）。
－有機溶剤を含んだ製品を使用する場合には，安全と衛生に注意し，火気厳禁としてください。

7）プライマー，接着剤の塗布方法について
－プライマー，接着剤は決められた塗布量と指触乾燥時間を守ってく ださい。

- プライマーの塗布は，当日の施工範囲内としてください。
- 降雨等にさらされた場合は再度プライマーを塗布してください。
- アクメボンドAD－102は必ず両面（下地とシート）に塗布し，指触乾燥後，タックのあるうちに張り付けてください（TS－SN，TS－L， TS－Kは下地のみで可）。
－指触乾燥時間は温度や湿度によって変わってきます。プライマー， アクメボンドAD－102は，さわって指に付着しない程度，アクメボ ンドAD－008は塗布面が白色から半透明に変わった時を目安にして ください。
－エマルション系のプライマーまたは接着剤上に溶剤系のプライマー または接着剤を塗り重ねることはやめてください（残存するプライ マーまたは接着剤が膨潤することがあります）。
－適量を越えて大量に塗布するとシートが膨潤することがありますの で，シート上にこぼしたりしないでください。

8）役物回りの処理について
－出•入隅角，役物回りについてはGシートを必ず増張りし，入隅は ステッチャーローラーで転圧してください。
－Gシートは下地にアクメボンド A D－102を塗布して使ってください。

9）シートの張付けについて

－シートの張付けはエアを巻き込まないようにおこない，張付け後は十分に転圧してください。転圧はローラーバケでシート中心部から幅方向にエア抜きを行った後，大ローラーで幅方向に転圧してくだ さい。入隅はステッチャーローラーを用いてください。
－シートの接合幅は 100 mm 以上とし，必ず，GTテープ30を挿入してく ださい（断熱工法の場合には，GTテープ40を挿入してください）。平場からの立上がり面（横ライン）は150mm以上としてください。
－TS－CLの接合部の施工は，アクメボンドAD－102のはみ出しがない よう，マスキングテープなどで養生をおこなってください。
－立上りは，シートを必ず平場から立上げ，どんづけにはしないでく ださい。立上りの高さが 400 mm 以上の場合は，一度に天端まで立上 げることなく，天端から立下げてください。
－張り仕舞い部端末には必ずGTテープ30を挿入してください（TS－L を除く）。
－シートと断熱材または 2 層防水の場合は，接合部が重ならないよう にしてください。
－TS－CLは高温時に接着剤を塗布して巻いた状態で短時間でも放置す ると，シートの再度の展開に時間がかかる場合があります。

10）断熱材の張付けについて

－断熱材の張付けは突合せとし，あばれたりしないようにガムテープ などでテーピングしてください。

- 断熱材を張り付ける時は，静電気の発生に注意してください。
- 断熟材の下地への張付けは，断熱材に合った接着剤を使ってくださ い。ポリスチレンフォームの張付けは，溶剤系接着剤は使わないで ください。
－ポリウレタンフォームは部分的に力がかかるとボードがへこむこと があります。膝当てなどで部分的な力がかからないようにしてくだ さい。
－ポリエチレンフォームは収縮することがありますので，全面をてい ねいに接着してください。

11）フクレの発生について

－シートのフクレが発生する原因は，水分，空気，残留溶剤の影響に よります。これらが太陽熱に暖められて気化膨脹し，フクレが発生 しますので施工時には注意してください。

原 因	対 \quad 策
水 分	下地の乾燥•脱気工法の採用
エア	シート張付け時に空気を巻き込まない
残留溶剤	指触乾燥時間を守る

12）不定形シール材について

－ブチルコーキングは3枚重ね部他，必要と思われる部分に打設して ください。

- シーリング村は防水の補助村として使ってください。
- ブチルコーキングは溶剤を含みますので，大量に打設するとシート が膨潤することがあります。
－押え金物は下地に合わせたビスを用いて両端から 100 mm 以下， 5 本以上 $/ 2 m$ で固定してください。
－ビスの頭上および押え金物の端末には必要に応じて，変成シリコー ン系シーリング材を打設してください。
－変成シリコーン系シーリング材を使用する場合は，仕様はシーリン グ材製造業者によります。

14）保護仕上塗料の塗布について

－TS－CL上に塗布する場合は，カバーペイントHTCを使ってください。 エマルション系塗料は密着不良を起こすことがあります。
－カバーペイントHTCは一度に液たまりができるほど大量に塗布しな いでください（シートと下地との密着が弱くなっている場合には，溶剤系塗料を塗布すると，シートが膨潤するおそれや，シワの寄る ことがあります）。
－エマルション系塗料の上にカバーペイントHTCを塗り重ねることは やめてください。溶剤により密着不良や変色の原因となることがあ ります。
－エマルション系塗料は乾燥前の結露で密着不良や白化が生じないよ う，冬期の日没前などは作業時間に配慮してください。
－シート表面にチョーキングが生じている場合は密着不良の原因とな ることがあります。塗り替えをおこなう場合は，事前に予備テスト をおこない，異常のないことを確認してください。

15）仕様について

－ニッタシートエキストラは次の規格，官庁仕様に適合できます（適合するシートの種類，工法の詳細については，下記書類をご参照さ れるか別途お問い合せください）。
－日本工業規格 JISA 6008
「合成高分子系ルーフィングシート」 加硫ゴム系
－日本建築学会「建築工事標準仕様書•同解説」JASS 8 防水工事種別 S－RF；S－RFT
－国土交通省大臣官房官庁営繕部監修「公共建築工事標準仕様書」
種別 S－F1；SI－F1
－国土交通省大臣官房官庁営繕部監修「公共建築改修工事標準仕様書」
P0S；P0SI；S 3 S ；S 3 SI ；S 4 S ；S4SII法
種別S－F 1 ；SI－F 1
－国土交通省大臣官房技術調査室「屋根防水の補修•改修技術」種別 S－V F

13）シートの端末処理について

－シートの端末には剥離防止のため，押え金物を取り付けてください。

防水層維持管理上のお願い

防水層が長期間にわたり安定した性能を保持できるよう，次の点を遵守してください。

①使用方法に関する注意事項

1）共通事項

－防水層の上に油，酸等の腐蝕性の液体や化学的侵食物，アル カリ防藻剤（クーリングタワーに使用）などの薬品，ガソリ ン，塗料，溶剤などをこぼさないでください。また，防水層上にダクトや煙突から油煙の混じった排気のないようにして ください。防水層の変色，膨潤，劣化などが起きて，防水機能を損なう恐れがあります（押え層がある場合でも目地部な どより浸透する可能性があります）。
－屋上やその周辺の増築あるいは改築工事をおこなう場合は，工事前に施工業者にご連絡ください。雨水の流れが変化し，防水層に悪影響を与える恐れがあります。

2）露出防水仕様の注意事項

－防水層上で作業をする場合は，必要に応じてコンパネ，ブルー シートなどで養生をおこない，防水層を保護してください。避雷針・アンテナ・空調機器等を設置する場合は，防水層上 に直接設置せずにゴム板などの下敷き材の上に設置してくだ さい。ただし，防水層を新しく貫通させる作業はできません。
－防水層の上には，設計時に予定した以外の重量物を置かない でください。重量物による防水層の変形や損傷の恐れがあり ます。
－防水層上に重量物を落としたり，鋭角なもので傷をつけない でください。寒冷地では特に雪おろし時にスコップで防水層 に傷をつけないように注意してください。
－防水層の上またはその付近では花火やたき火，たばこの投げ捨てなどはやめてください。防水層を燃焼させたり変質させ るおそれがあります。
－防水層の上に土を置き，植物を植えないでください（植生の仕様の場合を除く）。土の重量が防水層に悪い影響を与えた り，植物の根が防水層を損傷させる恐れがあります。
－防水層を撤去する場合は産業廃棄物として処理してください。

3 ）非歩行仕様の注意事項

－屋上または防水層の維持，点検のとき以外は防水層の上を歩 かないでください。防水層上の利用はできません。

4）軽歩行仕様の注意事項

－防水層上の利用は，ベランダ・物干し場•休憩場等に限りま す。不特定多数の方の歩行が予想される用途には向きません。
－防水層上を歩行する際には，靴底の柔らかい履き物を利用し てください。防水層を傷つけるおそれのあるハイヒールやス パイクなどのとがった底の履き物で歩かないでください。
－防水層の表面がぬれている時は滑りやすいので注意して歩行 してください。防水層接合部には段差がある場合があります ので，つまずくおそれがあります。
－防水層の上ではペットの飼育をしないでください。動物が乑 や歯で防水層を傷つけたり，排泄物が防水層を劣化させるお それがあります。
－防水層の上で運動や自転車の運転をしないでください。防水層に損傷を与えるおそれがあります。
－防水層の上では，軽いものでもテーブルやイスのように接地部の尖っているものはゴムキャップまたはゴム板などで保護 してください。

5）押え仕様の注意事項

－設計時に予定した以外の用途に使用目的を変更する場合は，防水層に損傷を与えるおそれがあるので，工事前に施工業者 にご連絡ください。
－付属の設計や施設を設置する場合には，クギやアンカー等で保護層を貫通して防水層を損傷させるおそれがあるので，保護層の構造，厚み，載荷重を考慮して設置してください。

維持管理に関する注意事項

防水層の機能を長期間維持するために次の事項をお願いします。
－定期的に（年 $2 \sim 3$ 回 ※）屋上や防水層を清掃してくださ い。特に排水溝，排水口周辺や隅部の泥や枯れ葉などを取り除いてください。
防水層の洗浄には，中性洗剤以外の薬品や金属ブラシは使用 しないでください。シートの接合部がある場合には，重なり合う上のシートから端末側の方向へ清掃してください。
－定期的に（ 2 年に 1 回 ※）防水層の状態を点検してください。次のような現象を認めた場合は施工業者にご連絡ください。
1）防水層の接合部が剥離している。
2）防水層が破れている，防水層に穴があいている。
3）保護コンクリート（保護層）に盛り上がりや欠損がある。
4）押え金物，笠木などの取付けが，ゆるんでいる。
－カバーペイントYTCを除く塗装仕上げの場合は定期的に（4年に1回 ※）仕上塗料（弊社指定材料）の塗り替えを有償に ておこなってください。
－仕上塗料は経年により，ツヤの消失，退色等が生じることが あります。また，仕上塗料の変色，摩耗は防水保証の対象外 となります。
－鳥害の予想される場合には，別途鳥害防止策を考慮してくだ さい。
－防水層に損傷を与えた場合，防水工事部分から雨漏りが発生 した場合は，速やかに施工業者にご連絡ください。
※「建築防水の耐久性向上技術」（国土開発技術センター発行）引用不明な点は事前に施工業者に問い合わせてください。
必要な場合は，合成高分子ルーフィング工業会（略称 K R K）発行のパンフレット「防水層維持管理上のお願い」をご請求ください。

ニッタ化エ品株式会社

本 社 〒556－0022 大阪市浪速区桜川4－4－26
東京支社 $〒 162-0808$ 東京都新宿区天神町10番地安村ビル
札幌支店 $\mp 060-0809$ 札幌市北区北九条西3丁目19－1 ノルテプラザ6F
東北支店 〒984－0051 仙台市若林区新寺1－2－26 小田急仙台東ロビル6F
中部支店 〒450－0003 名古屋市中村区名駅南1－17－23 ニッタビル $2 F$
広島駐在 $\mp 730-0042$ 広島市中区国泰寺 2 丁目 2－5
四国支店 $₹ 761-8071$ 香川県高松市伏石町2018－13
九州支店 $〒 812-0007$ 福岡市博多区東比恵 $4 丁$ 目 $4-7$
防水専用ホームページアドレス https：／／nitta－roofing．com

TEL 06－6563－1206 TEL 03－3235－1713 TEL 011－747－1040 TEL 022－292－1855 TEL 052－551－5611 TEL 082－535－3400 TEL 087－869－1595 TEL 092－411－8303

[^0]: －警告：カバーペイントHTCは火気は絶対厳禁です。

[^1]: －下地を清掃し，塵，泥土，レイタンスを十分に除去してから施工してください。

